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x,_.x',.....x;utn-amlymmm The test is
based on the integral of the weighted squared modulus of the difference between
sample and population characteristic functions. This integral expressmion is equivalent
»mmdmma:zmmammmmm
estimate. The asympiotic null distribution of the statistic is that of an infindte
weighted sum of mutually independent chi squared varistes. An approximstion to the
asymptotic null distridbution is given and applied to give the percentage points of a
test of fit of p-variate normality. The test of fit is consistent under mild regularity
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1. Introduction

The characteristic function corresponding to an arbitrary distribution function

P(x) is defined by

ou) = r_.up(tu)dr(x). (1.1)

where {2 = -1 and u is & real number. If x,, xX,,..., X, i8 & random sample from

P(x), the sample Information is completely captured by the sample characteristic
function

n
op(u) = n'l’E‘.w(iux,) . (1.2)

We are primarily concerned with testing the goodness of fit hypothesis

H: P(x) = Po(x) or equivalently At &(u) = ¢g(u) (1.3)
against the general alternative

H: P(x) » Pyu(x) or eQuivalently A: o(u) # 9g(u) .
Here P,(x) is a completely specified distribution function. Most of this paper is

devoted to the univariate case. Aowever, the structure of the analysis and the

LR Y
o

results clearly indicate that many of our results may be extended to the p-variate

[ A

case with only minor changes. Discussion of the p-variate case is confined to the ’
development of a test for p-variate normality. Tables of percentage points of the a
statistic and an approximation to the percentage points of the asymptotic distribution E
of the stavistic are also given. The distribution of the test statistic is shown to -
become asymptotic for very small sample sizes. E
The use of characteristic functions in testing hypotheses of fit originated with E
-

Beathcote (1972) who suggested that the hypothesis of symmetry of a distribution
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Po(x) could be based on a single value of 9n(u), u # 0. Much subsequent work
involving ¢n(u) a8 regards tests of fit has centered on the use of one or two
u-values; some work is based on qa2 u-values. The literature concerning tests of fit
based on sample characteristic functions has been recently reviewed and dicussed by
Csorgo (1964). The tests for normality of Hall and Welsch (1963) and Csorgo
(1906) are based on examining discrepancies between functions of the sample and
pogulation characteristic functions over a continuum of u-values. Our tests are
constructed Dy appropriately weighting the modulus squared of the discrepancies (én(u)
- @y(u)) and integrating over all real u. These tests are then shown to be
equivalent to integrating over the square of the discrepancies between a density and
its Parsen kernel estimate.

T™he following sections provide ocur main remilts and sketch the rationale bdehind
the use of sample characteristic functions and density estimators in tests of goodness

of fit. Purther details and procfs may be found in Bryamt and Paulson (1982).

2. Test Statistic and Discussion

A test of the hypothesis B of (1.3) may be effected if ¢,(u) can be compared
against ¢o(u) in some reasonable way. A8 a practical consideration based on
oextenmive attempts at development and application, it seems dangerous to make the
comparison at only a few points u,, u,,..., Uq, Say, since a charactertistic function
is not uniquely determined by its value at a finite number of u-values and any
resulting test would not be consistent. Purthermore, for large values of [ul, @4(u),
being mostly noise, contains virtually no Information concerning the parent
characteristic function ¢(u) of x,, X;,..., Xn. Because of these considerations we

were led to conwider
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In=nag =n r 1on(u) - ®g(u)i2 1¥(u)i? du (2.1) o+
| -®
“
bt
| 24 N
i = n J‘_ﬁlun(u) - we(u)l u. (2.2) 4
| )
| where wn(u) = Pn(u)y(u) and wo(u) = Pg(u)¥(u). .
% We shall asmume throughout that (1) y(u) is the characteristic function of an
abeolutely continuous distribution function F,(x) with corresponding density fy(x), and "-
(2) that {y(u)I>0 for all u # O and that [y(u)i? is integrable over (-o,®). Our ;
assumptions concerning y(u) imply (1) that all nonzero discrepancies of |é,(u) - '
®o(u)| over ardbitrary intervals acuc<b, acb, provide a positive contribution to the -
W,
integral in (2.1), and (2) that the integral (2.1) has the possibly more appealing ;'
equivalent form (Peller, 1966, Chapter 15, Heathcote, 1977) i
In = 2mn J‘ (h"(‘) - ho(x))‘ dx' (203) :~
-® -‘
where =

[,]
hp(x) = n‘*J}: f(x-xy) (2.4)
=3

tia s a ;‘-r‘v’\:

is an unbiased Parzen kernel estimator of ho(x) if x,, %x;,..., X, i8 a random

sample from f,(x). Since the convolution of an arbitrary distribution with an

e ;, o o b

absolutely continuous distribution is again abeolutely continuocus (Lukacs, 1970, p.

38), ho(x) is the density associated with the distridbution of x+z, where x and z are Y

\
»
!
independent random variables, x has distribution P,(x) and z has distribution Py(X). E‘
r
If Po(x) is absolutely continous with associated density f,(x), then hy(x) = )
fo(X)*fy(Xx), where * signifies the operation of convolution. I,
\l
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As an illustration, we consider the framework for a test of H: the population

distribution of X,, X3,..., Xn i8 N(O,1). In this case ¢o(u) = exp(-wi). We
choose y(u) = exp(-4ui) because, conveniently, the conwolution of two Gauseian

variates is again Gaussian. We thus have
n
ho(x) = (27%)"* exp( -kx*), Rp(xX) = n‘*(zw)"ljz':‘qx -4(x-xy )%

Some aspects of the character of the test procedure are determinable by emall
scale simualtion experiments, for example by drawing a random sample Xey Xzpeeoy Xpy
from first a N(O,1) population and subsequently from other populations. Pigure
1(a)-(c) depicts ho(x) for this illustration and typical h,(x) with ne20 and x,,
Xzy..+9y Xn & random sample from N(0,1), a random sample from the Cauchy
distribution 7-:(1+x2)"%, and a random sample from the uniform distribution on
(-1.14, 1.14) respectively. The parameters of the uniform distridbution were
determined so that its mean, variance, and skewness matched those of P,(x). This
figure suggests that the test for normality based on I, will perform well against
long -tailed alternatives but less well against symmetric short-tailed alternatives, an
observation verified in an unpublished Rensselaer Polytechnic Institute Ph.D.
dissertation by Hwang (1964).

Pigure 1. Comparison of expected density h,(x), dashed, with h (x), solid,

for ho(x) Gaussian and h,(x) constructed from (a) Gaussian, (b)
Cauchy, and (¢) uniform random samples.
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Since both (¢p(u) - o(u)|2 and |y(u)i? are even functions of u, the integral

expression I, in equivalent to the mathematically more convenient

I, = n J._.lyn(u) - y(W)I2 IX(u)? du (2.5)

where the real-valued functions y(u) and yn(u) are given by

y(u) = Re¢(u) + Imd(u), Ya(u) = Reda(u) + Imdp(u) .

T™he function y(u) is also a transform and y,(u) is its unbiased sample version.
There are also data analytic, graphical, and computational advantages to using the
transform y(u) instead of ¢(u); for example plots of y,(u) and y(u) are easier to
interpret than separate plots of the real and imaginary parts of 9,(u) and &(u).
Most of the asymptotic results concerning I, are developed from the covariance kernel

x(u,v) of the stochastic process y,(u),

K(u,v) = n cov(yp(u), ¥Yn(Vv))

= Red(u-v) + Imd(u+v) - y(u)y(v). (2.6)

3. Main Results Concerning I,

We now give the main results concerning I, of (2.1) and (2.3). Proofs are
somewhat lengthy and are not given here; additional details may be found in Bryant

and Paulson (1982).

Theorem 1. The goodness of fit statistic [, = na, of equation (2.1) and (2.3) has,

when the null hypothesis H is correctly specified, the asymptotic distribution whose

characteristic function c(u) is
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[ J
©(u) = @ (1 - 2Ag1u)"Y, (3.1)
asl 0
h)
b))
where A,, Ap,... are the positive eigenvalues of the integral operator K given dy ;
Ky(u) = r R(u,v)y(v)iv(v)i? dv, (3.2) .
-® "
o
where ;
b

R(u,v) = ReGa(U-V)+INo( UtV )~ [REGo( U )+ IMe,( U ) ICREGL(V )+Imdy(V)]. ;

This result characterizes the asymptotic distridbution of [, as that of an infinite

‘..

weighted sum of independent chi squared variates, each having one degree of freedoa,

[_J
i.e., I, has the asymptotic distribution ofjl:ixjxj.
=

PITEN

Theotem 2. T™he goodness of fit test of the hypothesis H: ¢ = ¢ based on the 1
statistic I, of (2.1) is, when the null hypothesis B is correctly specified, consistent. .
-
This result guarantees that the power of the test approaches unity as the sample :?
size increases without bound for any altermate P = P,. Many of the tests in the .
literature based on the use of the chracteristic function do not possess the :
A
confistency property of Theorem 2. In particular, the tests of Heathcote (1972), .:
[ 1
Kellermeier (19!0)_. and Koutrouvelis (19680, 1981), are Aall based on only a finite -
number of u-values and therefore cannot be consistent.
hid

Theotem 3. The jth cumulant x5 of the asymptotic distribution of I, is
21°3 ¢ a) s
- ° A a . K
Ky ® (3-2)1 .E:. g I® 1 (3.3) "
~
e
N
,'f
6 N
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where

(]
EAd = [ runivun® a, (3.4)
o= -

and the Rh iterated kernel Ky(u,v) is defined recursively by K,(u,v) = K(u,v) and

Ky(u,v) = J. Ky.1(u,t)K(t,v)Iy(t)I dt. (3.9)
-@®

The cumulant expression (3.5) makes determination of approximations to the

limiting distribution of I, relatively easy to obtain. Purthermore, this expression is

easily extended to dimensionality p > 1. As it turme out, the Pearson (1959) three
cumulant x2 approximation produces acceptable results in the upper tail of the
distribution of I, as judged by exact numerical inversion of (3.1) for a variety of
special cases. The approximation determined by the weighted sum of two independent
chi squared variates on m;, and m, degrees of freedom, a,x? + a,x}, is even better

but is a little more difficult to compute (Bryant and Paulson, 1982).

4&. Asymptotic Power of the Tests

The developments in this section closely parallel those of Durbin and Knott
(1972). Under the null hypothesis we will take the underlying population distribution
function P,(x) to be standard normal with ¢5(u) = exp(-yu?) and will consider only

simple altermate hypotheses of mean and variance shift, We take y(u) =

oxp( -58%u?), with m specified as we proceed. Asymptotic power as a measure of
performance of a test is not altogether satisfactory since it is liable to be highly
dependent on the particular null and alternative distributions chosen for investigation

and because of its local character. Nevertheless, the demonstration of adequate

;?,1
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performance in terms of limiting power in some given typical situation lends credibility
to the proposed testing procedure. We shall omit the technical details of the
development and simply present the results.

Table 1 presents the asymptotic power of the goodness of fit test based on I, at
the 5% level of significance for several values of the scaling parameter m. Identical
results were obtained for Gauss-Hermite quadrature of orders 48 and 64, so it is
uummmmgmammwmamwucmam
through use of I,. Also included in Table 1 for comparative purposes are the
asymptotic powers of the Cramer-von Nises test, Anderson-Darling test, and Watson's
U2 test, which have been computed by Ourbin and Knott (1972).

Note that the value of the scaling factor m strongly influences the behavior of the
test. Large m yields tests which are extremely sensitive to mean deviation, since the
behavior of the sample characteristic function near the origin dominates the tast
statistic. At the same time, the performance of the test against veriance shift
deteriorates. Conversely, smaller values of m will, up to a point, emphasize
deviations in variance. If mean and variance shift alternatives are of equal concern,
Table 1 indicates that a choice of m between .8 and unity is reasonable.

A comparison of the I, test (with m = 1) with the other three tests shows that, If
mean and variance shifts are of equal concern, the Anderson-Oarling test is superior
while I, ranks second. The asymptotic power of I, in the particular situations
addressed here is therefore comparable to those of other commonly accepted
procedures. The attractive power properties of I, in the univariate case indicates
that it is worth investigating an extension of I, to tests of p-variate normality. The

tests which obtain from these extensions will be true p-variate tests.

»,
2",
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Table 1

Asymptotic Power (in %) of Goodness-of-PFit Tests
Against Mean and Variance Shift in the Two-Sided Situation

Mean Shift variance Shift

Best Test - 350% Best Test - 958 Best Test - S0% Bast Test = 95%
» = 4/3 £7.4 93.8 12.7 1.0
I ms1 44.6 92.2 17.6 63.4
n = 4/S 41.8 90.3 20.2 67.3
m= 2/3 3.4 g80.0 21.1 67.7
Cramer-von Mises 48,7 92.8 8.5 25%5.0
Anderson-Darling 47.2 93.0 40.1 ee.9
Watson's U2 20.8 60.7 24.9 71.12
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S. Test of Pit for p-variate Normality

T™he test statistic (2.1) as stated need not be affine invariant, a serious
drawback in multivariate tests of fit (Cox and Small, 1978). Affine invariance for the
Gaussian case is howsver easily effected. Given a random sample x,, x,,.

s e ‘n
putatively from Ny(u,D), we base a test of fit for Ny(x,D) on
Ip,n = n IR 'Wn(“)‘«\l)l‘lﬂ(°l‘uru) du, (5.1)
' -
where Wu) = exp( -yu'u) and
n
Wn(u) = 0"t L exx 1D (x;-u)). (8.2)

Here DY is the unique inverse of the symmetric square root of the positive definite

covariance matrix D and u is a pxi vector of real numbers. The expression (S.1)
has the closed form representation

Ip,n = mP(n"2 mP £ E exx -(2m%)"4Qy)

- 2(y+md)-¥P x’: exp( -(2(1+2m2))"1Qy) + n(1+m?)"P) (5.3)
where

Qs = (Xy-u)'D"2(xy-4), Qg = (Xy-%y)T(20)72(%y-xy) .

A straightforward extension of (3.3) to p-dimensions gives the j-th asymptotic
camulant of I, a8

SRR

Ky = (3-1)123°1 L Ky(u,u)exp( -a2u’u) du, (5.4)
[

10




mmmmrmdnmtx,(u.v)umtorjhzbymm“

relationship

Ky(u,v) = L Ky -1(U,WIK(W,v)exp( -niw'w) dw
-] .

with Kg(u,v) = K(u,v) = $(u-v) - Wu)¥(-v), and where u, v and w are pxl vectors
of real numbers. By tediocus integration, the first three cumulants of the asymptotic

distribution of I, n are determined to be
K, = TIP((m2)"N0 - (14md)-¥P)
Ky = 2nP ((mE(2+m2))"9P . 2((1+m2)2-%)°P + (14md)"P) (5.5)

Ky = B(73)4P(2°(m2(342m2)2) 4P - (3)2¥P((1+m2)(1+4mi+2m*)])" WP

+ (3)2PC(14m2) (14202 )(3+2m2)1°%P - ((1+m2)3)°¥P),

The p dimensional version of Theorem 1 gives the asymptotic null distribution of Ip a

as that of

[ J

A ’
5 pix}
mnmxtuomwymmmnnndv‘mmonmdogmofﬁm
and the Apy are nonnegative weights which satisfy Lipy = x,.

The variate

3
w22 OB, voe Tay (s.6)

is constructed to have the same first three cumulants as the asymptotic distribution of



r——'m'm-'m-mmmm T T % o o)

Ip,n- Accordingly, the upper tail of the asympiotic null distribution of I, , admits of L

the approximation (Pearson, 1939) 3

Pr(Ty,n & ) ¥ prOx & v + B (wery)) . (8.7) X

The approximate null distribution of I 5 for m=1i and for 1 s psSsSand p<n s .
120 has been developed by simulating 10000 independent realizations of the statistic 3
x,,ntormmanp. The cubic-spline smoothed upper 10, 5, and
1% points are given in Tadle 2. The entry under nsm represents the percentage point
computed from (5.7). This table clearly indicates the rapidity of the convergence of

eSS

the percentage points of I, p to those of the asympiotic distridution of In,p.

Considersble effort was expended in an attempt to find good values of m as a Amction

%

of p and we finally settled on the choice mei as a good one, but it 18 not optimal in e
the sense of providing maximal power agéinst any specific altermatives. The situation .
here involving a choice for m to provide good power against uninown alternatives is ;
similar to that encountered in density estimation: & variety of kemels and window 2
widthe give good remilts for specific situations but no specific choice seems to be e
uniforaly good when only data, and not the parent distribution of the data, are B
K2

available (Tapia and Thompeon, 1978, PP. 24-91 and especially pp. 60-680 and pPPp. :.,-
76-04). .
When u and D are not specified and are estimated from the data by K

A

. n . n . - r -
u=ntLxy, Dan"tL (x5-u)xy-u) ,

181 I1=1 )

define ‘
“u

. n 3 . N

Wn(u) = n"t L exp(1u'D"%(xs-u)), ~

i=1 >

o

~

~d

N

N
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Table 2. Upper 100a Percemt Points for the Statistics
x’.n .-1' 9'1(1)5. nad

100a
-] n 10 5 1

L] 1.14 1.91 2.40

10 1.16 1.8 2.48
20 1.10 1.97 2.%0
&0 1.10 1.57 2.%92
120 1.19 1.58 2.5
o 1.19 1.58 2.%3
L] 2.90 3.40 £.76
10 2.80 3.4 4.7
20 2.84 3.44 4£.84
40 2.97 3.48 4.90
120 2.00 3.%0 4.92
) 2.99 3.82 4.9
10 5.70 6.60 .57
20 5.72 6.63 0.63
40 5.74 6.63 8.00
120 5.7% 6.60 0.73
® 5.7¢ 6.70 8.7¢
10 10.54 11.09 14.9
20 10.60 11.9% 14.93
<0 10.64 12.00 14.93
120 10.69 12.08 14.9%
® 10.72 12.07 14.97
10 19.09 20.93 24.9
20 19.10 20.94 24.75%
40 19.16 21.03 26.9)3
120 19.28 21.17 2%.13
® 19.31 21.23 25.26
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and
ZIp,n(u,D) = n I. IWa(u) < Wu)I2 exp( -m2u’u) du. (S.9) By
. [ ]
R
)

The statistic I, (i4,0) has the explicit representation (5.3) wWith 4 and D substinsted

0
-

24

for 4y and D respectively. The statistic I,,n(f&.ﬁ) is affine invariant, is easy to

compue, and is based on a complets spectfication of the p-variate normal which

T

explicitly accounts for all deviations from p-variate normality and thus specifies a true

p-variate test. Probabllistic arguments strongly suggest that the goodnees of fit test A
I'..
of the composite hypothesis H: the parent distribution of X,, Xz,..., X, 18 ~
ux’

¥p(u,D), 4 and D compietely unspecified, based on I, (4, D) 18 consistent for all

OCmuce; however, we have not been able to obtain an analytical proof of this. e
N

Percentage points for (5.8), 14p<€10 are available in Paulson et al. (1906). N,
b
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